Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076844

RESUMO

Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. In this study, we employed a multidisciplinary approach to unravel the interactions between human HP1α and nucleosomes. We have elucidated the cryo-EM structure of an HP1α dimer bound to an H2A.Z nucleosome, revealing that the HP1α dimer interfaces with nucleosomes at two distinct sites. The primary binding site is located at the N-terminus of histone H3, specifically at the trimethylated K9 (K9me3) region, while a novel secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. This study offers a model that explains how HP1α functions in heterochromatin maintenance and gene silencing, particularly in the context of H3K9me-dependent mechanisms. Additionally, it sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.

2.
J Chem Inf Model ; 63(18): 5834-5846, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37661856

RESUMO

Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.


Assuntos
Inteligência Artificial , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Microscopia Eletrônica , Adenilato Quinase
3.
bioRxiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37662343

RESUMO

Glucose, the primary cellular energy source, is metabolized through glycolysis initiated by the rate-limiting enzyme Hexokinase (HK). In energy-demanding tissues like the brain, HK1 is the dominant isoform, primarily localized on mitochondria, crucial for efficient glycolysis-oxidative phosphorylation coupling and optimal energy generation. This study unveils a unique mechanism regulating HK1 activity, glycolysis, and the dynamics of mitochondrial coupling, mediated by the metabolic sensor enzyme O-GlcNAc transferase (OGT). OGT catalyzes reversible O-GlcNAcylation, a post-translational modification, influenced by glucose flux. Elevated OGT activity induces dynamic O-GlcNAcylation of HK1's regulatory domain, subsequently promoting the assembly of the glycolytic metabolon on the outer mitochondrial membrane. This modification enhances HK1's mitochondrial association, orchestrating glycolytic and mitochondrial ATP production. Mutations in HK1's O-GlcNAcylation site reduce ATP generation, affecting synaptic functions in neurons. The study uncovers a novel pathway that bridges neuronal metabolism and mitochondrial function via OGT and the formation of the glycolytic metabolon, offering new prospects for tackling metabolic and neurological disorders.

4.
Curr Res Struct Biol ; 4: 68-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284830

RESUMO

Cryo-electron microscopy (cryo-EM) has produced a number of structural models of the SARS-CoV-2 spike, already prompting biomedical outcomes. However, these reported models and their associated electrostatic potential maps represent an unknown admixture of conformations stemming from the underlying energy landscape of the spike protein. As with any protein, some of the spike's conformational motions are expected to be biophysically relevant, but cannot be interpreted only by static models. Using experimental cryo-EM images, we present the energy landscape of the glycosylated spike protein, and identify the diversity of low-energy conformations in the vicinity of its open (so called 1RBD-up) state. The resulting atomic refinement reveal global and local molecular rearrangements that cannot be inferred from an average 1RBD-up cryo-EM model. Here we report varied degrees of "openness" in global conformations of the 1RBD-up state, not revealed in the single-model interpretations of the density maps, together with conformations that overlap with the reported models. We discover how the glycan shield contributes to the stability of these low-energy conformations. Five out of six binding sites we analyzed, including those for engaging ACE2, therapeutic mini-proteins, linoleic acid, two different kinds of antibodies, switch conformations between their known apo- and holo-conformations, even when the global spike conformation is 1RBD-up. This apo-to-holo switching is reminiscent of a conformational preequilibrium. We found only one binding site, namely that of AB-C135 remains in apo state within all the sampled free energy-minimizing models, suggesting an induced fit mechanism for the docking of this antibody to the spike.

5.
Biochem Soc Trans ; 50(1): 569-581, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35212361

RESUMO

Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares , Imagem Individual de Molécula
6.
Sci Adv ; 7(49): eabl8213, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851659

RESUMO

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.

7.
Methods Mol Biol ; 2315: 197-217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34302678

RESUMO

pH conditions are central to the functioning of all biomolecules. However, implications of pH changes are nontrivial on a molecular scale. Though a rigorous microscopic definition of pH exists, its implementation in classical molecular dynamics (MD) simulations is cumbersome, and more so in large integral membrane systems. In this chapter, an integrative pipeline is described that combines Multi-Conformation Continuum Electrostatics (MCCE) computations with MD simulations to capture the effect of transient protonation states on the coupled conformational changes in transmembrane proteins. The core methodologies are explained, and all the software required to set up this pipeline are outlined with their key parameters. All associated analyses of structure and function are provided using two case studies, namely those of bioenergetic complexes: NADH dehydrogenase (complex I) and Vo domain of V-type ATPase. The hybrid MCCE-MD pipeline has allowed the discovery of hydrogen bond networks, ligand binding pathways, and disease-causing mutations.


Assuntos
Proteínas de Membrana/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ligantes , NADH Desidrogenase/metabolismo , Conformação Proteica , Prótons , Transdução de Sinais/fisiologia , Eletricidade Estática , ATPases Vacuolares Próton-Translocadoras/metabolismo
8.
bioRxiv ; 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34013265

RESUMO

Cryo-electron microscopy (cryo-EM) has produced a number of structural models of the SARS-CoV-2 spike, already prompting biomedical outcomes. However, these reported models and their associated electrostatic potential maps represent an unknown admixture of conformations stemming from the underlying energy landscape of the spike protein. As for any protein, some of the spike's conformational motions are expected to be biophysically relevant, but cannot be interpreted only by static models. Using experimental cryo-EM images, we present the energy landscape of the spike protein conformations, and identify molecular rearrangements along the most-likely conformational path in the vicinity of the open (so called 1RBD-up) state. The resulting global and local atomic refinements reveal larger movements than those expected by comparing the reported 1RBD-up and 1RBD-down cryo-EM models. Here we report greater degrees of "openness" in global conformations of the 1RBD-up state, not revealed in the single-model interpretations of the density maps, together with conformations that overlap with the reported models. We discover how the glycan shield contributes to the stability of these conformations along the minimum free-energy pathway. A local analysis of seven key binding pockets reveals that six out them, including those for engaging ACE2, therapeutic mini-proteins, linoleic acid, two different kinds of antibodies, and protein-glycan interaction sites, switch conformations between their known apo- and holo-conformations, even when the global spike conformation is 1RBD-up. This is reminiscent of a conformational pre-equilibrium. We found only one binding pocket, namely antibody AB-C135 to remain closed along the entire minimum free energy path, suggesting an induced fit mechanism for this enzyme.

9.
Methods Mol Biol ; 2302: 335-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877636

RESUMO

Molecular dynamics or MD simulation is gradually maturing into a tool for constructing in vivo models of living cells in atomistic details. The feasibility of such models is bolstered by integrating the simulations with data from microscopic, tomographic and spectroscopic experiments on exascale supercomputers, facilitated by the use of deep learning technologies. Over time, MD simulation has evolved from tens of thousands of atoms to over 100 million atoms comprising an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium. In this chapter, we present a step-by-step outline for preparing, executing and analyzing such large-scale MD simulations of biological systems that are essential to life processes. All scripts are provided via GitHub.


Assuntos
Bactérias/citologia , Cromatóforos Bacterianos/química , Biologia Computacional/métodos , Bactérias/química , Aprendizado Profundo , Simulação de Dinâmica Molecular
10.
Matter ; 4(10): 3195-3216, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-35874311

RESUMO

Cryo-electron microscopy (EM) requires molecular modeling to refine structural details from data. Ensemble models arrive at low free-energy molecular structures, but are computationally expensive and limited to resolving only small proteins that cannot be resolved by cryo-EM. Here, we introduce CryoFold - a pipeline of molecular dynamics simulations that determines ensembles of protein structures directly from sequence by integrating density data of varying sparsity at 3-5 Å resolution with coarse-grained topological knowledge of the protein folds. We present six examples showing its broad applicability for folding proteins between 72 to 2000 residues, including large membrane and multi-domain systems, and results from two EMDB competitions. Driven by data from a single state, CryoFold discovers ensembles of common low-energy models together with rare low-probability structures that capture the equilibrium distribution of proteins constrained by the density maps. Many of these conformations, unseen by traditional methods, are experimentally validated and functionally relevant. We arrive at a set of best practices for data-guided protein folding that are controlled using a Python GUI.

11.
J Chem Phys ; 153(21): 214102, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291927

RESUMO

Driving molecular dynamics simulations with data-guided collective variables offer a promising strategy to recover thermodynamic information from structure-centric experiments. Here, the three-dimensional electron density of a protein, as it would be determined by cryo-EM or x-ray crystallography, is used to achieve simultaneously free-energy costs of conformational transitions and refined atomic structures. Unlike previous density-driven molecular dynamics methodologies that determine only the best map-model fits, our work employs the recently developed Multi-Map methodology to monitor concerted movements within equilibrium, non-equilibrium, and enhanced sampling simulations. Construction of all-atom ensembles along the chosen values of the Multi-Map variable enables simultaneous estimation of average properties, as well as real-space refinement of the structures contributing to such averages. Using three proteins of increasing size, we demonstrate that biased simulation along the reaction coordinates derived from electron densities can capture conformational transitions between known intermediates. The simulated pathways appear reversible with minimal hysteresis and require only low-resolution density information to guide the transition. The induced transitions also produce estimates for free energy differences that can be directly compared to experimental observables and population distributions. The refined model quality is superior compared to those found in the Protein Data Bank. We find that the best quantitative agreement with experimental free-energy differences is obtained using medium resolution density information coupled to comparatively large structural transitions. Practical considerations for probing the transitions between multiple intermediate density states are also discussed.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Químicos , Proteínas/química , Adenilato Quinase/química , Aldeído Oxirredutases/química , Lipoproteínas/química , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Conformação Proteica , Termodinâmica
12.
Methods Mol Biol ; 2165: 301-315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32621233

RESUMO

In recent years, owing to the advances in instrumentation, cryo-EM has emerged as the go-to tool for obtaining high-resolution structures of biomolecular systems. However, building three-dimensional atomic structures of biomolecules from these high-resolution maps remains a concern for the traditional map-guided structure-determination schemes. Recently, we developed a computational tool, Resolution Exchange Molecular Dynamics Flexible Fitting (ReMDFF) to address this problem by re-refining a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution (Wang et al., J Struct Biol 204(2):319-328, 2018). In this chapter, we present a step-by-step outline for preparing, executing, and analyzing ReMDFF refinements of simple proteins and multimeric complexes. The structure determination of carbon monoxide dehydrogenase and Mg2+-channel CorA are employed as case studies. All scripts are provided via GitHub (Vant, Resolution exchange molecular dynamics flexible fitting (ReMDFF) all you want to know about flexible fitting, 2019, https://github.com/jvant/ReMDFF_Singharoy_Group.git ).


Assuntos
Simulação de Dinâmica Molecular/normas , Conformação Proteica , Software/normas , Aldeído Oxirredutases/química , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Limite de Detecção , Complexos Multienzimáticos/química , Imagem Individual de Molécula/normas
13.
J Chem Inf Model ; 60(5): 2591-2604, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32207947

RESUMO

Despite significant advances in resolution, the potential for cryo-electron microscopy (EM) to be used in determining the structures of protein-drug complexes remains unrealized. Determination of accurate structures and coordination of bound ligands necessitates simultaneous fitting of the models into the density envelopes, exhaustive sampling of the ligand geometries, and, most importantly, concomitant rearrangements in the side chains to optimize the binding energy changes. In this article, we present a flexible-fitting pipeline where molecular dynamics flexible fitting (MDFF) is used to refine structures of protein-ligand complexes from 3 to 5 Å electron density data. Enhanced sampling is employed to explore the binding pocket rearrangements. To provide a model that can accurately describe the conformational dynamics of the chemically diverse set of small-molecule drugs inside MDFF, we use QM/MM and neural-network potential (NNP)/MM models of protein-ligand complexes, where the ligand is represented using the QM or NNP model, and the protein is represented using established molecular mechanical force fields (e.g., CHARMM). This pipeline offers structures commensurate to or better than recently submitted high-resolution cryo-EM or X-ray models, even when given medium to low-resolution data as input. The use of the NNPs makes the algorithm more robust to the choice of search models, offering a radius of convergence of 6.5 Å for ligand structure determination. The quality of the predicted structures was also judged by density functional theory calculations of ligand strain energy. This strain potential energy is found to systematically decrease with better fitting to density and improved ligand coordination, indicating correct binding interactions. A computationally inexpensive protocol for computing strain energy is reported as part of the model analysis protocol that monitors both the ligand fit as well as model quality.


Assuntos
Simulação de Dinâmica Molecular , Redes Neurais de Computação , Microscopia Crioeletrônica , Microscopia Eletrônica , Conformação Molecular , Conformação Proteica
14.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730852

RESUMO

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Assuntos
Células/metabolismo , Metabolismo Energético , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Células/efeitos da radiação , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusão , Transporte de Elétrons/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Meio Ambiente , Ligação de Hidrogênio , Cinética , Luz , Simulação de Dinâmica Molecular , Fenótipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Eletricidade Estática , Estresse Fisiológico/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA